• Hastie, A., Householder, J. E., Coronado, E. N. H., Pizango, C. G. H., Herrera, R., Lähteenoja, O., de Jong, J., Winton, R. S., Corredor, G. A. A., Reyna, J., Montoya, E., Paukku, S., Mitchard, E. T. A., Åkesson, C. M., Baker, T. R., Cole, L. E. S., Oroche, C. J. C., Dávila, N., Águila, J. D., … Lawson, I. T. (2024). A new data-driven map predicts substantial undocumented peatland areas in Amazonia. Environmental Research Letters19(9), 094019. https://doi.org/10.1088/1748-9326/ad677b
  • Dargie, G. C., del Aguila-Pasquel, J., Córdova Oroche, C. J., Irarica Pacaya, J., Reyna Huaymacari, J., Baker, T. R., Hastie, A., Honorio Coronado, E. N., Lewis, S. L., Roucoux, K. H., Mitchard, E. T., Williams, M., Draper, F. C. H., & Lawson, I. T. (2024). Net primary productivity and litter decomposition rates in two distinct Amazonian peatlands. Global Change Biology, 30, e17436. https://doi.org/10.1111/gcb.17436
  • Sassoon, D., Fletcher, W.J., Roucoux, K.H., Ryan, P., Lawson, I.T., Honorio Coronado, E.N., Del Aguila Pasquel, J., Bishop, T., Åkesson, C.M. and Hastie, A. (2024), Influence of flooding variability on the development of an Amazonian peatland. J. Quaternary Sci. https://doi.org/10.1002/jqs.3587
  • Lauerwald, R., Allen, G. H., Deemer, B. R., Liu, S., Maavara, T., Raymond, P., Alcott, L., Bastviken, D., Hastie, A., et al. (2023). Inland Water Greenhouse Gas Budgets for RECCAP2: 1. State-of-the-Art of Global Scale Assessments. Global Biogeochemical Cycles, 37, e2022GB007657. https://doi.org/10.1029/2022GB007657
  • Lauerwald, R., Allen, G. H., Deemer, B. R., Liu, S., Maavara, T., Raymond, P., Alcott, L., Bastviken, D., Hastie, A., et al. (2023). Inland water greenhouse gas budgets for RECCAP2: 2. Regionalization and homogenization of estimates. Global Biogeochemical Cycles, 37, e2022GB007658. https://doi.org/10.1029/2022GB007658
  • UNEP (2022). Global Peatlands Assessment – The State of the World’s Peatlands: Evidence for action toward the conservation, restoration, and sustainable management of peatlands. Main Report. Global Peatlands Initiative. United Nations Environment Programme, Nairobi. https://www.unep.org/resources/global-peatlands-assessment-2022
  • Flores Llampazo, G., Honorio Coronado, E. N., del Aguila-Pasquel, J., Cordova Oroche, C. J., Díaz Narvaez, A., Reyna Huaymacari, J., Grandez Ríos, J., Lawson, I. T., Hastie, A., Baird, A. J., & Baker, T. R. (2022). The presence of peat and variation in tree species composition are under different hydrological controls in Amazonian wetland forests. Hydrological Processes, 36( 9), e14690. https://doi.org/10.1002/hyp.14690
  • Hastie, A., Honorio Coronado, E.N., Reyna, J. et al. Risks to carbon storage from land-use change revealed by peat thickness maps of Peru. Nat. Geosci. 15, 369–374 (2022). https://doi.org/10.1038/s41561-022-00923-4
  • Apers, S., De Lannoy, G. J. M., Baird, A. J., Cobb, A. R., Dargie, G., del Aguila Pasquel, J., Gruber, A., Hastie, A. et al (2022). Tropical peatland hydrology simulated with a global land surface model. Journal of Advances in Modeling Earth Systems, 14, e2021MS002784. https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021MS002784
  • Honorio-Coronado, E. N., Hastie, A., et al. Intensive field sampling increases the known extent of carbon-rich Amazonian peatland pole forests. Environ. Res. Lett. 16, 74048. https://doi.org/10.1088/1748-9326/ac0e65 (2021).
  • Hastie, A., Lauerwald, R., Ciais, P., Papa, F., and Regnier, P.: Historical and future contributions of inland waters to the Congo Basin carbon balance, Earth Syst. Dynam., 12, 37–62, https://doi.org/10.5194/esd-12-37-2021 , (2021). 
  • Ribeiro, K., Pacheco, FS., Ferreira, JW., de Sousa-Neto, ER., Hastie, A., Krieger, GC., Alvalá, PC., Cristina Forti, M., Ometto, JPHB. Tropical peatlands and their contribution to the global carbon cycle and climate change. Glob Change Biol; 27: 489– 505. https://doi.org/10.1111/gcb.15408, (2021).
  • Felgate, S. L., Ala-Aho, P., Anderson T. R., Bastviken, D., Burba, G., Evans, C., Giani, M., Gkritzalis, T., Hartman, S., Hargreaves, G., Hastie, A., Kitidis, V., Klemedtsson, L., Lapworth, D., Lauerwald, R., Lindroth, A., Lohila, A., Luchetta, A., Mammarella, I., Marttila, H., Peacock, M., Pickard, A., Rutgersson, A., Sanders, R., Stinchcombe, M., Vaha, A., Veasala, T., Wood, T., Weislen, P., and Mayor, D. J., Report detailing the ideal and minimum requirements for pan-European scale monitoring of land-ocean-atmosphere carbon fluxes (RINGO, EU Horizons 2020).
  • Hastie, A., Lauerwald, R., Ciais, P., Regnier, P. Aquatic carbon fluxes dampen the overall variation of net ecosystem productivity in the Amazon basin: An analysis of the interannual variability in the boundless carbon cycle. Glob Change Biol. 25: 2094– 2111, https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.14620, (2019).
  • Qiu, C., Zhu, D., Ciais, P., Guenet, B., Peng, S., Krinner, G., Tootchi, A., Ducharne, A., and Hastie, A.: Modelling northern peatland area and carbon dynamics since the Holocene with the ORCHIDEE-PEAT land surface model (SVN r5488), Geosci. Model Dev., 12, 2961–2982, https://doi.org/10.5194/gmd-12-2961-2019, (2019).
  • Hastie, A., Lauerwald, R., Weyhenmeyer, G., Sobek, S., Verpoorter, C., Regnier, P. CO2 evasion from boreal lakes: Revised estimate, drivers of spatial variability, and future projections. Glob Change Biol; 24: 711– 728. https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.13902, (2018).
  • Kennedy, M. P., Lang, P., Grimaldo, J. T., Martins, S. V., Bruce, A., Hastie, A., … Murphy, K. J. Environmental drivers of aquatic macrophyte communities in southern tropical African rivers: Zambia as a case study. Aquatic Botany, 124, 19–28. https://www.sciencedirect.com/science/article/pii/S0304377015000285, (2015).