

Horizon's ERC funding scheme: from the applicant's viewpoint

Mariya Shamzhy

Did I win or loose?

"Sometimes when you win, you really lose. And sometimes when you lose, you really win" Rosie Perez

Step 2 Evaluation Report CONFIDENTIAL

Call reference	ERC-2020-STG
Activity	Starting Grant
Funding scheme	ERC STARTING GRANTS
Panel name	PE5
Proposal No.	950193
Acronym	ENforCE
Applicant Name	Mariya SHAMZHY
Title	Nanoscale-to-atomic Engineering of acid site for selectivE heterogeneous Catalysis

PANEL SCORE AND RANKING RANGE

Final panel score: A (fully meets the ERC's excellence	Ranking range*: 53%-55%
criterion and is recommended for funding if sufficient funds are available)	For your information, only the top 36% of the proposals evaluated in panel PE5 in Step 2 were funded.

^{*} Ranking range of your proposal out of the proposals evaluated by the panel in Step 2, in percent, from 1% for the highest ranked proposals to 100% for the lowest ranked.

While not funded by ERC, my project ENforCE was fully supported within national ERC_CZ program

National analogues of ERC vs regular ERC

- Long-term support of a research topic of your choice 5-year grant
- Building the research team reasonable budget

e	rc

Funding scheme	Eligibility	Success rate, %	Budget
Starting	2-7 yrs. after PhD	11 – 14	≤ 1.5M €
Consolidator	7-12 yrs. after PhD	12 – 14	≤ 2.0M €
Advanced	-	10 – 14	≤ 2.5M €

Funding scheme	Eligibility	Success rate, %	Budget
Junior STAR	8 yrs. after PhD	9 (2020)	≤ 1M €
EXPRO	"seasoned scientists"	17 (2019)	≤ 2.1 M €

https://vedavyzkum.cz/granty-a-dotace/granty-a-dotace/jaka-je-uspesnost-ve-verejnych-soutezich-ve-vyzkumu-a-vyvoji

MINISTRY OF EDUCATION, YOUTH AND SPORTS

	Funding scheme	Eligibility	Success rate, %	Budget
N,	ERC_CZ	-A or B in ERC call -Resubmission of ERC in 2 years	100	= ERC 2-years B 5-years A

Meeting the ERC excellence criterion: starting points

"How you gather, manage, and use information will determine whether you win or lose."

Bill Gates

Information about the grant call

ERC official website

https://erc.europa.eu/

- Eligibility criteria, program objectives
- Profiles of successful applicants
- Abstracts of funded projects....

Video-classes by ERC

https://www.youtube.com/playlist?list=PLtv6FnsXqnX AYRk6HCErwMxwML0ZKoMcy

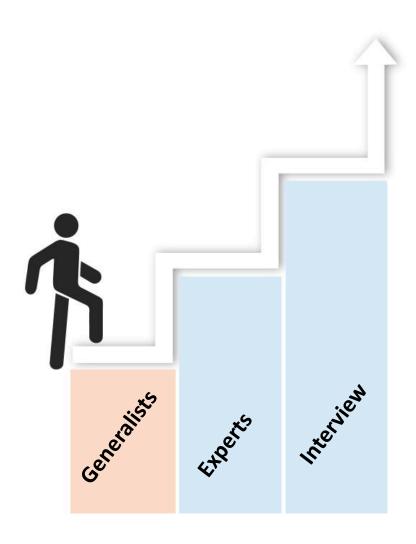
- How to prepare application?
- Evaluation process

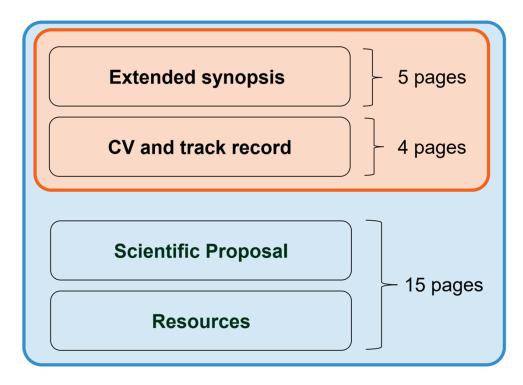
Contact points for ERC at the Faculty of Science

Following their instructions is important

https://www.natur.cuni.cz/eng/project-management-department/funding-opportunities/erc/erc-pipeline

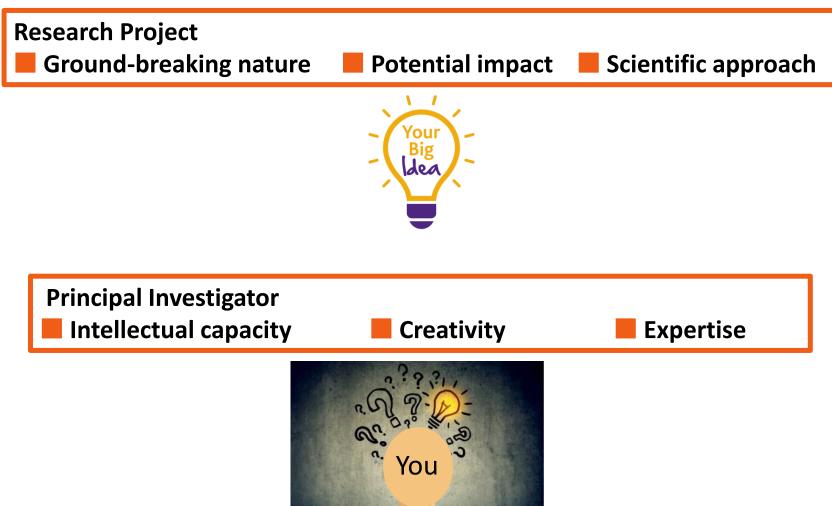
- individual consultations
- ERC-related events
- "homeworks" and feedback from ERC evaluators and much more...





Meeting the ERC excellence criterion: points to consider

The 2-step evaluation process with the same criteria (questionnaire at each step)



Proposal

- Understandable for a generalist
- Appealing for experts

Meeting the ERC excellence criterion: points to consider

Reviewer's questionary

Proposal

Presents what reviewers will be looking for

Example of a reviewer report

Reviewer 3

Research Project

Ground-breaking nature and potential impact of the research project

The proposed research addresses the open challenge of controlling the atomic-level characteristics of active sites for zeolite catalysts introducing a chemo- and regioselective post-synthesis approach exploiting unique features of germanosilicate zeolites.

The set objectives are ambitious while the proposed research is rated of medium risk although potentially of high gain.

Scientific Approach

The proposed approach is rated feasible bearing in mind the extent that the proposed research is medium risk/high gain.

The research methodology is novel and the working arrangements are appropriate to achieve the goals of the project.

The proposed timescales are appropriate and well placed. Resources in as far as post-docs and PhDs are well justified although the involvement for three senior researchers with an active engagement need to be better explained be and the request for an EELS /TEM is not convincingly elaborated.

Principal Investigator Exceptional / Excellent / Very good / Good / Non-competitive To what extent has the PI demonstrated the ability to conduct ground-breaking research? Excellent To what extent does the PI provide evidence of creative independent thinking? Excellent To what extent does the PI have the required scientific expertise and capacity to successfully execute the project?

Comments (Optional for reviewers)

Excellent CV for the scientific age. The project witness the capacity of creative thinking. The applicant has the relevant experience and the ambition to go forward.

Visualization of the idea. Structure of the proposal

Reserve enough time for making your proposal "reviewer-friendly"

- Provide the information, which they are looking for in specific sections
- Follow the template as much as possible
- Avoid excessive words
- Make important things visible and easy to get

Mariya V. Shamzhy Part B1 ENforCE

Accordingly, major breakthroughs in the field have highlighted the key role of "atomic" characteristics (i.e., confinement, 16 pairingl 4, 17 and molecular connectivity 18, 18) of acid sites on the activity of zeolite catalysts. The concept of site confinement (i.e., location in micropores of different sizes, Figure 1) has been pioneered by Prof. [glesia, 19] who demonstrated that only specific parts of a given zeolite structure are catalytically active as specific transition states must be appropriately stabilized in the zeolite void through spatial constraints to ensure catalytic activity. 20-22 Furthermore, the

Figure 1. Framework metal atom differing in confinement

distribution of framework Al atoms between isolated (act as independent catalytic sites, Figure 2) and paired (act in concerted manner in particular reactions, Figure 2) configurations has been recently recognized to determine zeolite activity and selectivity in some of industrially relevant processes (e.g., methanol-to-hydrocarbons, ^{14, 23} propene oligomerization, ²⁴⁻²⁵ alkanes cracking, ²⁶ among others). Therefore, overlooking "atomic" characteristics when designing zeolites inherently limits atom efficiency of a catalyst.

In contrast to aluminosilicates, hydrophobic Lewis acid zeolites (i.e., Ti- and Sn-substituted silicates) are exceptionally active heterogeneous catalysts in a number of liquid-phase catalytic transformations of bio-

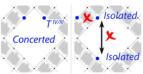


Figure 2. Framework metal atoms differing in pairing

renewable compounds.²² However, they typically have several structurally distinct configurations of metal sites (i.e., "open" and "closed" centers, Figure 3),²⁸ only some of which are catalytically active in a targeted chemical process. In particular, the number of "open" (SiO)₃T–OH) sites correlates with the rates of (1) epoxidation of alkenes over Ti-substituted zeolites,²⁸ (2) Baeyer-Villiger oxidation of cyclic ketones and glucose-to-fructose isomerization over Sn-substituted zeolites ^{15, 18, 30} and (3) Meerwein–Ponndorf-Verley reduction of cyclic ketones over both Sn- and Zr-substituted zeolites,²⁸ whereas the number of "closed" Sn-sites ((SiO)₄Sn) correlates with the rate of aldol

condensation.²⁸ Thus, the ratio between "open" and "closed" sites of Lewis acid zeolites can be easily detected **but not controlled** using available synthetic methods, which precludes catalysts tunability.

Based on the above, I hypothesize that not only confinement, pairing and molecular connectivity but also the local geometry (set of interatomic distances and respective angles for atoms in specific crystallographic positions, Figure 4) of framework metal atoms govern the activity and selectivity of zeolite catalysts.

Although conventional hydrothermal synthesis and post-synthesis approaches are excellent tools for tuning the chemical composition of zeolite catalysts, they are still unable to control "atomic" characteristics of acid sites. [4-15, 17]

Accordingly, in this project, I will address the

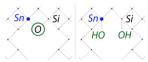


Figure 3. Structurally distinct configurations (molecular connectivities) of Sn sites proposed in the literature

aforementioned challenges facing zeolite chemistry by going beyond conventional "nanoscale" engineering of acid sites and venturing into new frontiers in materials design – manipulating metal atoms in zeolite frameworks with atomic precision.

2. Research proposal

I propose controlling the "atomic" characteristics of acid sites (i.e., confinement, pairing, molecular connectivity and local geometry) through chemo- and regioselective post-synthesis approach, which is based

on the following well-known, but yet unexploited features of zeolites:³¹

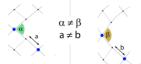
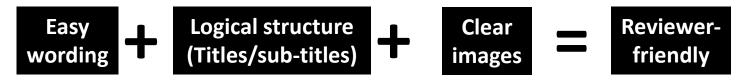
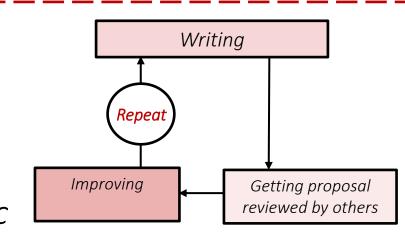
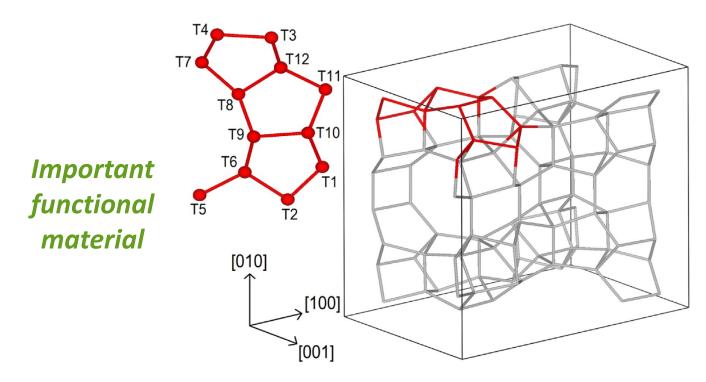



Figure 4. Framework metal atoms differing in local geometry

1) Ge atoms are preferentially located at T-sites, corresponding to the double-four ring (D4R) units in zeolite frameworks (Figure 5). ³²⁻³⁴ Ge was confirmed (i) to induce the formation of D4R units at the beginning of crystallization (as shown by electrospray ionization mass spectrometry), (ii) to accelerate the crystallization of zeolites, containing D4Rs (by kinetic studies of zeolite crystallization) and (iii) to stabilize such structures (by computational modelling studies). In contrast, the random location of framework B and Al atoms precludes us from fine-

3


Preparation of ERC Proposal in short


- Examining and following the instructions of ERC program
- First drafting CV and track record not to leave them for the last moment Am I competitive? Is it right time to apply for ERC?
- Writing the whole proposal (B2) than the extended synopsis (B1)
 Similar like preparing the article
- Spend time on planning your needs, clearly reflected in the budget Evaluated at the 2^{nd} step

"Perfection is not attainable, but if we chase perfection we can catch excellence."
Vince Lombardi

- Not only re-writing
- BUT
- Rethinking / reshaping the idea
 in line with high risk / high gain philosophy of ERC

Meeting the ERC excellence criterion starts with an idea...

Controllable chemical composition **Uncontrollable** positions of atoms in the structure

My idea: super-efficient materials by controllable positioning of atoms

Is it ground-breaking and high gain?

Is it risky, but still feasible?

B1&B2: addressing hard question #1

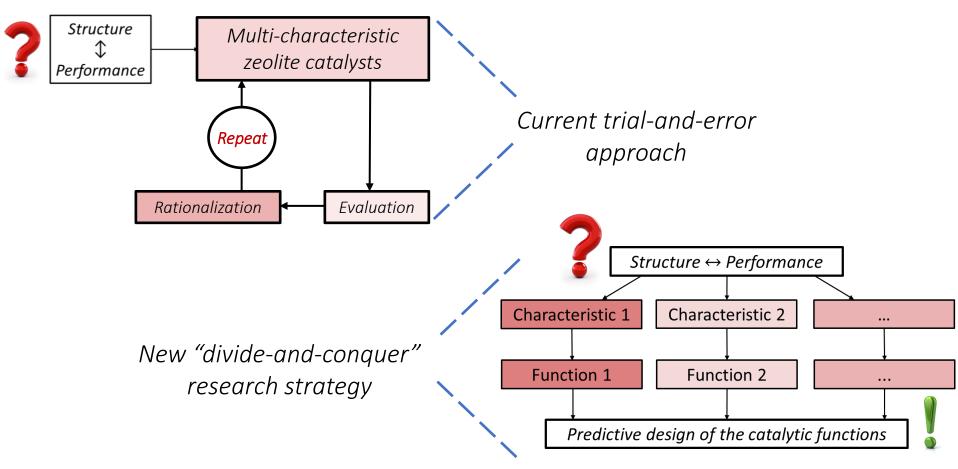
Why is my idea high-gain?

ERC

- Major breakthroughs, taking the field **considerably** forward
- Disruptive to other fields of research

NOT ERC

- Publications / dissemination
- Mainly applicative
- Steppingstone, which requires additional research to achieve significant gain


To address the key problem, answer the following questions:

What would happen if the project successfully achieves its objectives? What would the field of research, or the world, then look like? Will the project generate new valuable scientific knowledge? How will this knowledge impact the field?

B1&B2: addressing hard question #1

Why is my idea high-gain?

How did I address this question in the proposal?

Shift in the experimental paradigm for zeolite chemistry

B1&B2: reviewer's feedback

- ... truly innovative synthetic strategies will boost the field and provide important fundamental and practical knowledge
- ...will help to address the long-standing structural problem of zeolite catalysis
- ... new concepts will be applicable in a wide variety of fields ranging from material sciences, inorganic chemistry, catalysis and chemical engineering
- ...will deliver new mechanistic concepts and help to push forward the industrialization of more sustainable and green chemical conversions
- There are many open scientific questions that will be addressed in this project and that make it so exciting and innovative

■ The work is groundbreaking but to only focus on the most traditional materials, zeolites, will limit the scientific impact.

B1&B2: addressing hard question #2 Why is my project high-risk, but feasible?

Conceptual risk (high) Methodological risk (low)

Research is based on -far-reaching assumptions

-preliminary result-based ambitious **scientific hypothesis**

Realistic and detailed methodology

Preliminary results

Clear workplan

Well-justified budget

(Needed resources, available resources)

Risk mitigation plan

My hypothesis: sub-nm control significantly improves the performance of the materials

The risk is that the hypothesis can be proven right or wrong and the answer will be

found only after the research is done

B1&B2: reviewer's feedback

- The project is of high risk/high gain. The experience of the applicant gives confidence that goals of importance will be reached
- ...contains medium to high risk parts...The risk is mitigated by including several design approaches...and the strong background of the PI
- rated of medium risk although potentially of high gain
- the risks ... are very high while if successful the impact is expected to be quite good at the fundamental level
- ... good balance between preliminary results, yet leaving enough questions open
- Risk analysis is well discussed
- this task is far of being trivial
- I see no evidence that the expertise is available in the group for CS-corrected EM
- Little detail is given in the catalytic evaluation
- ...if there are preliminary synthesis results about the de-germanation, there is no first evidence of a successful metal precise substitution.

CV and track record

Ground-breaking nature

Low methodological risk (feasibility)

High conceptual risk

PI Profile

Intellectual capacity

- Publications
- Awards

Scientific expertise

- Publications
- Grant history as PI
- Supervising students
- *Invited lectures*

Independence / Creativity

- Grant history as PI
- Collaborations
- Corresponding authorship
- Group leader

My CV and track record

Ground-breaking nature

Low methodological risk (feasibility)

High conceptual risk

PI Profile

Intellectual capacity

- Publications
- Awards

Scientific expertise

- Publications
- Grant history as PI
- Supervising students
- Invited lectures

Independence / Creativity

- Grant history as PI
- Collaborations
- Corresponding authorship

1st author:

Group leader

Objectively

54

14

Independence: team member, leading small grants with a couple of students

Grants: 2 GACR grants as PI **Publications:**

Awards:

2020 – Dean's Award Corr. author: 14

2017 – Werner von Siemens Award *h-index:* 18

Supervised students: BSc: 2; MSc: 2 (1 defended) PhD: 1 Visiting associates: 3

Research environment-dependent achievements: tell your story

Independent creative thinking – independence + creative thinking (Exceptional: 2/9; Excellent: 3/9, Very good: 3/9, Good: 1/9)

- she was able to build an independent and unique research profile within a community of strong senior researchers working on closely related problems
- the ability to coordinate and guide research students
- PI has started her independent career as seen from her recent publications, grant applications and international collaborations
- The leading role of PI is apparent from the corresponding (and last) authorship on most recent publications
- ...in most of the papers, the PI does not appear as corresponding author, suggesting that the PI is not fully independent in her research

Quality + quantity:

Senior/corresponding authorship is preferred

Ability to conduct a ground-breaking research (Excellent: 7/9, Very good: 2/9)

- ...excellent track record
- ■...scientific breakthroughs in previous work documented through a significant number of high impact publications
- involved in several research projects demonstrating her ability to successfully execute this proposed project
- ...a publication list and list of achievements, which would place her among the top 10% of her peer group

Quality is better than quantity:

tell what is important about your publication and about your unique role in them

Interview

Ref. Ares(2021)4465916 - 09/07/2021

Brussels, 08 July 2021 Ares(2021)4248633

Review session: Step 1

Mariya SHAMZHY Hlavova 2030/8 12840 Prague Czech Republic

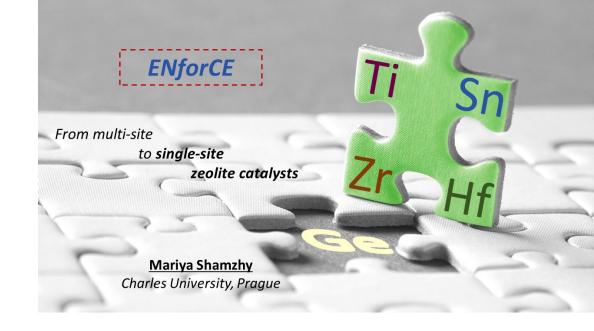
Dear Dr. SHAMZHY,

Subject: Additional information on the interview

As announced in our previous communication, please find below additional information regarding your interview.

Applicant name	Mariya SHAMZHY
Applicant address	Hlavova 2030/8 12840 Prague Czech Republic
Evaluation panel:	PE11
Interview date:	14 October 2021
Interview slot:	08:40 - 09:50 Brussels time

Annex I: Specific requests from Panel PE11


Interview format and any other panel specific comments about your interview:

The panel will ask you to make a **5 minutes presentation** of yourself and your proposal, followed by **20 minutes of questions and answers**.

These time limits will have to be strictly followed.

Interview

"If I had more time, I would have written a shorter letter" Blaise Pascal

1. Short presentation (5 min)

- -Strictly follow the instructions on the duration / slide numbers
- -Main massage originality of the project and your capability to lead it
 No Pl's CV, team members, etc.
 Don't summarize the whole proposal, it is hardly possible
 Focus on the main idea of the project, gain/risk aspects, feasibility
- -Less information on slides is more
- -Refresh your presentation skills, practice

2. Q&A (20 min)

Interview

"With confidence, you have won even before you have started." Marcus Garvey

2. Q&A (20 min)

- Questions by external referees are raised at interview
- Short answers, to the point

Repeat Improving Getting feedback from others

How did I prepare?

- Mock interviews in front of different audience (experts, non-experts, former ERC evaluators/grantees)
- Simulation of different scenario of discussion:
- pleasant / unpleasant, positive/negative, supporting/provocative, encouraging/confrontational
- Mental preparation / (try to) be confident

Summary

Preparation of the ERC proposal can be totally exhausting even if it is based on appropriate idea.

Be ready for laborious process in marathon style to make an excellent proposal outstanding for generalists and experts

BUT

"When you compete with someone as good or better than you, you may not always win, but you never lose."
Michael Josephson