Imperfect gases
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Higher coefficients— too complicated
It is not suitable for condense phase,
high orders would be required
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Liquids

Completely different than gases =» different approach required

Example — argon in gas and liquid phase

law = 188 pm

m = 39,95 g/mol

p; = 1430 g/L

pg=1,784 g/L
Gas

Virial expansion

Density mol/L Molecules | V(Ar)

g/L /L %
Gas 1,784 0,045 2,69*%10%2 | 0,075
Liquid 1430 35,795 2,16*10%° | 60,00

Liquid
Pair distribution function

Introducing correlation function g@
» g®@ can be obtained from diffractional analysis
« TD variable can be expressed as a function of g®




Distribution function Z, :f...fe‘UN”‘Tdrldrz...drN

(N,V,T)
Probability that molecule 1 is in v dr, around r; ... N v dry around ry
—PUn
e 7 ndr,...dr
(N) _ 1 N
P (rl,...,rN)drl...drN I
N

Probability that molecule 1 is in dr; around r,, ..., nin dr, around r,, and other molecules are
anywhere:

ol ePhdr..dr
P(”)(rl,...,rn)drl...drn='[ j R
ZN

Probability that any molecule is in dr; around ry, ..., nin dr,, around r,, and other molecules
are anywhere:

N !
(n) _ (n)
p (r,-.-,r)— P (r,--.,r)
PO (Nt T
,0(1) The simplest distribution function @) d
ornetal p o (r)dr N
Crystal — periodic function _ ,0(1) =—=p

Liquid — a constant V V



Molecules are totally independent:

(n) — A" * Their motion is not correlated
prl, ) =p « No interactions
* Non-zero probability to find two molecule
at one point
* no phase transitions can occure

(.. r)=p"g"(r,...T.)

,2correlation function®
* It respects the interaction between molecules
» partial analogy to ab initio



Correlation function g™ — represents non-dependence of molecules

p(r,...r.) = p"g"(r,...T)

N1 [ leMdr L dr
g(n)(rl,."’rn): V N I j 1 N
N"(N —n)! Z,

udr, ...,

oVl (1+0(|\|-1))ImjeﬂZ

VENL [ [ehdr..dr
NZ(N —2)! Z,

g(Z)(rp rz) —

Spherical molecules — g depends only on the distance r;, : g@(ry,) = g@(r)

Probability of finding the second molecule in dr around r from the first molecule

| pg(r)dzridr=N-1~N
0

Radial distribution function g(r) ... Factor that gives local density from density
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Figure 13-3. The radial distribution fusction of a flwid of molecules obeving a Leansrd.Jones 6-12 I — o0.. g (r) > 1
potential from molecular (ynamics caleukations. 77 — & Te and p* = o'p.

_[pg(r)4yzr2dr =N-1~N
0

Radial distribution function g(r) ... Factor that gives local density from density



Assuming pair-representability in potential energy

Uy (f,-ry) :Zu(rij)

i<]
All TD functions can be expressed as a function of g(r)

Radial distribution function can be obtained from diffraction experiments for liquids kapalin:

Scattering thrrough Sln(S °° sin(sr)
an angle 6 P(0) « ZZ f4ﬂr2g(r) - dr
0
Inter-atomic distances g — (47r/ /I)sin(é?/ 2)

rj changes continuously

v

P(8) T47”2 (g(r)-1)

sin(sr)
Sr

dr+f47zr2 ST) dr
0

Fourier =0
transformation

P(0) j [g(r)—1]e™dr



P(0) o j[g(l‘) —1]e*dr h(r)=(g(r)-1) ... Goesto O forlarger
XpP

h(s) = p'[ h(r)e™dr ,Structure factor*

TD functions of liquids from diffraction analysis !!!
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Three different pair-distribution functions — X-ray gives only their
superposition and it cannot be simply decomposed
Combination of X-ray and neutron diffraction for H20 and D20
gives enough data for decomposition

40 40
Radial distribution functions of ice at 220 K Radial distribution functions of water at 298 K
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TD functions in terms of g(r)

QN VvT —

Q
o N'[VJ o

Imperfect gases

L (2mmkT )™, 2,
NIl h? NI

Expression for E, p, y must be found
(Others can be obtained from these)

Holds in classical limit
(for monoatomic gas)

Accounting for inter-molecular interactions — consider monoatomic gas for simplicity

1 .
Q(N,V,T):WI...fe M dp,...dp, dr,..dr,

J Integration over momenta

3N/2
27mkT ] Z,

1
QIN.V.T)= N![ h?

:f___fe”N“‘Tdrldrz...drN

1 N
:%z pfn_l_pf/n—i_pzzn +U Xl'yl""ZN
n=1



TD functions in terms of g(r)

Expression for E, p, 4 must be found
(Others can be obtained from these)

1 [27kaT ]3“’2 Z,
Z, =

Q VT =Tl N 1A

E:sz[a'”Q]
aT ),

J kinetic potencial
~
E=§NkT+kT2[aanN] ~ 3Nk +0
2 oT  Jyv 2

_ f---er‘ﬁUdrldr,\I
U= 7

Pair representation — all contributions are equivalent:

U= N(I\;_l) f.--fu(rlzz)eﬁ“drldm N N(Nz_l)ffu(rlz) f...fezﬂUdrgdrN drdr,
N N



5 N(N )~ f“( p)e dndn, NN - Pff (rlz){“/ feﬂUdrdr}drldrz

j---je‘ﬂUNdrg...drN

N

p(Z)(rl’ r,)=N(N-1)

U= %ff (r,)p? r,r, drdr,

P, .t )= p"g " (r,....T.)

—_ 2 R
—2'—\/[u(r)g(r)%r
E 3 f

P 2
——=—+—— [ u(r)g(r,p,T)4nr-dr
T 2+2kT~Of()g( p, )4



27mkT ) Z,
h? O =N
Only Z,, depends on V

—p:kT[alnq] :kT[alnzN]
oV N.T oV N.T

Assuming that for large V the pressure does not depend
on the container shape — use a cube of volume V.

1
QuVi.T = N![

V1/3

:f...fe‘UN”‘Tdrldrz...drN = f"'feﬁudxldyldzl'“dXNdyNdZN
0

l X, =V"x", Substitution — introduction of fractional coordinates

_VNLZ‘:[ —Uy /deX

Z,, is a function of volume, and even U, depends on volume :



Assuming that interaction energy can be express as a sum of pair interactions:

1 1
Z, :V“'ffeL’N”‘de‘l...dz‘N
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u(ry,) is the same as any other term —%2N(N-1) terms
Integration splitted into integration over coordinates of 1 and 2 and on other coordinates

p [alnzN] N N(N-1) drdrr du(r12 7 xex
_ p —Gu dr,..dr
N, T ff o [ [

KT | ov TV Z,kT6V dr,,
VN!
@ —p exp —Gu dr,..dr,
PP =p"g N(Nz)lszpﬁ 2 2
. V2N! N2,
P 2 ~—7zV =N
NZ(N—2)! V

p H [13
— ru'(r)a(r)4rrad ,Pressure equation
e e f ()g(r)an q

Holds for both liquids and gases
Expanding g(r,0,T) over the density — virial coefficients can be obtained



Expression for E, p@nust be found OAJT
(Others can be obtained from these) 9T .

¢€(0,1) ,coupling parameter” .... Switching on/off the interaction
gu(rllj) Switching the interaction between molecules 1 and j
N
Ur,.,r,¢= qu L, + Z ur, Addition/deletion of molecules from the system
j=2 2<i<j<N molecule ,1° is in the system just partially (¢)
grpT:€ Radial distribution function depends on ¢.
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Express as a funciton of ¢
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B §Jrqu(r)g(r,p,T)47rr2dr

NKT 2 2kT A
P pz T, 2 Other TD functions
—=p— ru'(r)g(r)4mr=dr
= 6KT[ (r)g(r)ar >
+g(r)
0 o0
o 3, P : 2
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Equations for liquids

We need an expression for g(r)
One has to use some approximative expression — still difficult
Different levels of approximations/complications




Distribution function in a system of N-1 molecules
Kirkwood integral eqguation(1930)

KTInp™ 1,..,n,¢& =KTInp+KTInpl P 2,0 —¢> u(r) +— ff fu( 6,)p® 1,1, ¢ drdrde
j=2

o 1 nn41¢
_f fU(r1n+1)7 m 1. 5 drn+1d£

n=2

(i)/fz5 -9 13¢

Cannot be solved without approximations

KTIng® 12,6 =éu(r)+p [ [ur, dr,d¢

Coupled equations — hierarchy
To find a solution — they must be uncoupled — approximations.



8w (R,...1)  Definition of function w

g (r,...r)=e

-V, Gradient of w(" with respect to the position of molecule j
—VJ—U Force acting on molecule j for any fixed configuration of moleculesl...N
VENL [ e hdr..dr

@(r,r,)=
97 n) N?(N -2)! Z,

SN v VY Q) Mean force acting on molecule j averaged over all konfigurations of other
: ) (n+1,N) molecules

w™ Potential that gives the mean force acting on particle j

W(Z)(rij) ,Effective” potential between 2 molecules separated by r; averaged over the
positions of all other molecules



a(r) g and w — like a mirror image
20 gl
For low density w? (r) — u(r)
or V Hard spheres: w(? is attractive even if u isn’t
Other molecules provides attraction
0.0 v‘a_—',:
w‘;‘(r»'c

Pair aditivity is assumed
w® 1,2,3) ~ w? 1,2)+ w? (2,3) + w? 1,3) g ) 1,2,3) ~ g(z) (1,29 (@) (2, 3)g(2) 1,3)

3
—kTIng r,,¢ =§U(r12)+pf0 j;u f, 913" (g r, —1drdg’

Kirkwood integral equation

orn-Green-Yvon equation - similar
Percus-Yevick

Hypernetted-chain } Different type

of equations
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Figure 13-6. (a) Equation of state of hard spheres calculated from the Born-Green-Yvon and Kirkwood
integral equations compared with the results of molecular dynamics calculations. v, is the
closest-packing volume, No3/V'2. (b) Equation of state of hard spheres calculated from
the HNC and Percus-Yevick integral equations compared with the results of molecular
dynamics calculations. (From D. Henderson, Ann. Rev. Phys. Chem., 18, p. 31, 1964.)



o = Molegular Dynamics

J0F ® = Percus=Yevick Fquation
T* = 0.880
p*=0185
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Figure 13~11. The radial distribution function from the Percus-Yevick equation for the Lennard-Jones
6-12 potential. (From F. Mandel, R. J. Bearman, and M. Y. Bearman, J. Chem. Phys.,
52, p. 3315, 1970.)



