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Abstract

Computational prediction of T cell epitopes is a crucial component in the development of novel vaccines. T cells in a healthy verte-
brate host can recognize as non-self only those peptides that are present in the parasite’s proteins but absent in the host’s proteins.
This principle enables us to determine the current and past host specificity of a parasite and to predict peptides capable of eliciting a
T cell response. Building upon the detailed mapping of T cell clone specificity for Severe Acute Respiratory Syndrome Coronavirus 2
(SARS-CoV-2) antigens, we employed Monte Carlo tests to determine that empirically confirmed T cell-stimulating peptides have a
significantly increased proportion of pentapeptides, hexapeptides and heptapeptides not found in the human proteome (P< 0.0001,
Cohen’s d> 4.9). We observed a lower density of potential pentapeptide targets for T cell recognition in the spike protein from the
human-adapted SARS-CoV-2 ancestor compared to 10 other SARS-CoV-2 proteins originating from the horseshoe bat-adapted ances-
tor. Our novel method for predicting T cell immunogenicity of SARS-CoV-2 peptides is four times more effective than previous
approaches. We recommend utilizing our theory-based method where efficient empirically based algorithms are unavailable, such
as in the development of certain veterinary vaccines, and combining it with empirical methods in other cases for optimal results.
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Introduction
The adaptive immune system of vertebrates discriminates be-

tween self and non-self antigens primarily by detecting peptides

originating from non-self proteins. The detection of unknown

molecules (or any previously unknown entities) might seem a

challenging or even unsolvable problem, especially in compari-

son with the detection of known molecules or entities, but evolu-

tion found an elegant way of solving this principally tricky task. It

is based on an interplay of T cells, Major Histocompatibility

Complex (MHC) proteins, and antigen-presenting cells [1].
Almost all nucleated cells in vertebrates continuously digest a

sample of all their endogenous proteins. A subset of the resulting

peptides is presented on their surface for inspection by T cells.

Specifically, these are the peptides that exhibit affinity to some

variants of their MHC class I proteins. Similarly, professional

antigen-presenting cells, such as dendritic cells or B-cells, digest

a sample of all proteins which were transported to their interior

by phagocytosis or endocytosis, and present on their surface a

subsample of this sample, that is, peptides with affinity to some

variant of their MHC class II proteins. Antigen-presenting cells

cannot discriminate between self and non-self peptides: both

types of peptides are therefore presented on their surface for

inspection by T cells. Clones of T cells, each recognizing a differ-
ent peptide—or a small group of peptides—kept by non-covalent
bonds in the groove of MHC proteins, likewise cannot discrimi-
nate between self and non-self peptides. But during maturation,
they pass through the thymus, where T cells with a strong
enough affinity to any peptide attached to the MHC molecules
(peptides originated from self-proteins) either die or differentiate
into a specialized type of T cells—regulatory T cells [2–4]. Due to
this combination of negative selection and elimination of T cells
which bear receptors with insufficient affinity to any MHC–pep-
tide complex, most mature cytotoxic and helper T cells patrolling
in our bodies recognize only non-self peptides, that is, peptides
that are not presented in the thymus.

In their coevolutionary arms race with hosts, parasitic organ-
isms gradually eliminate all unnecessary pentapeptides from
their peptide vocabulary. It has been demonstrated that a para-
sitic lifestyle affects the size of organisms’ pentapeptide vocabu-
lary, that is, the number of different pentapeptides in their
proteins, more strongly than the size or complexity of their prote-
ome [5]. To avoid recognition by host’s T cells, parasites with a
broad host specificity eliminate all unnecessary pentapeptides,
that is, they reduce the size of their peptide vocabularies.
Parasites characterized by a narrow host specificity substitute
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peptides not present in the proteins of their natural host species
with those which are present there. In particular, they mutate
these peptides, potential targets of T cell recognition, into pepti-
des present in the peptide vocabulary of their host species. In vi-
ruses, bacteria, and parasitic protozoa, this evolutionary process
can take place both within the entire metapopulation or in partic-
ular infrapopulations, that is, in the populations of parasites
within individual hosts. The process can be therefore relatively
rapid and can even affect the progress of a disease in an individ-
ual patient. The resulting peptide vocabulary mimicry could be
partly responsible for the phenomenon of host specificity, that is,
for the fact that most parasite species have a limited range of po-
tential host species [6].

The similarity between pentapeptide and hexapeptide vocabu-
laries can potentially indicate the species that serves as the natu-
ral host of a specific parasite species. This kind of analysis has
recently shown that the natural host of the ancestor of Severe
Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was
probably a horseshoe bat, while the natural host of the donor of
its spike gene was human [7]. The same study also suggested
that treeshrews were likely the most recent hosts of the virus
from which SARS-CoV-2 sourced most of its protein-coding
genes, while rats were probably the most recent hosts of the virus
from which the spike gene originated.

In this study, we tested a critical prediction of the peptide vo-
cabulary mimicry theory: we investigated whether the immuno-
genicity of peptides of viral origin can be predicted based on the
content of pentapeptides and hexapeptides which are not present
in their host’s peptide vocabularies. We took advantage of a re-
cently published list of 734 peptides which elicited a specific im-
mune response of cytotoxic or helper T cells isolated from 99
post-COVID patients [8]. Using in silico methods, we sought the
intersecting points between the list of real (empirically identified)
T cell response targets and a list of potential T cell recognition
targets, that is, peptides present in SARS-CoV-2 but absent in the
human proteome.

Materials and methods
The proteomes (predicted sets of all proteins of a given organism)
of Homo sapiens (F _000001405.39) and SARS-CoV-2, Wuhan vari-
ant (GCF_009858895.2), were downloaded from the NCBI
GenBank database. We prepared the peptide vocabularies of
humans and SARS-CoV-2 as previously described [7]. Unlike pre-
vious studies, we included in the analysis all proteins, encom-
passing paralogs. We first preprocessed the proteomes by
filtering out all comments, annotations, and special codes (e.g.
for unknown amino acids and gaps). Subsequently, we generated
lists of all unique pentapeptides, hexapeptides, and heptapepti-
des present in the peptidomes of SARS-CoV-2 and humans (their
pentapeptide, hexapeptide, and heptapeptides vocabularies) us-
ing the ImunDist 2.0 program [https://doi.org/10.6084/m9.fig
share.17711474.v3]. This program, in silico, cuts the proteins into
overlapping peptides of a desired length (e.g. pentapeptides) and
records a list of unique peptides of that length in the proteome
(assembling a peptide vocabulary). Using R, we prepared a list of
penta-, hexa-, and heptapeptides present in SARS-CoV-2 proteins
but absent in human proteins, representing potential targets for
T cell recognition. From the paper by Tarke et al. [8], we extracted
the lists of T cell response targets found in Supplementary Tables
S5 and S8 [8].

To obtain a subset of genuine T cell response targets contain-
ing some of our potential targets for T cell recognition, the

mcSortStrings 1.0 program [9] was used. Additionally, the
mcPeptides 1.0 program [9] was employed to calculate the subset
of potential T cell recognition targets contained within at least
one genuine immune response target. Both programs (R scripts)
were utilized to perform one-sided Monte Carlo tests (see Fig. 1).

Lists of potential targets for T cell recognition were generated
for the entire SARS-CoV-2 proteome and separately for the spike
protein, and the remaining 10 SARS-CoV-2 proteins were
screened for T cell targets in the study [8] (products of genes M,
N, nsp3, nsp4, nsp6, nsp12, nsp13, nsp16, ORF3a, ORF8). For both
Monte Carlo tests, 10 000 sets of pseudo-targets were randomly
selected from all overlapping peptides of a given length present
in the SARS-CoV-2 proteome. These random sets were of the
same size as the actual set of potential T cell recognition targets.

In the first Monte Carlo test (performed with mcSortStrings),
significance was computed as the fraction of 10 000 random sets
containing peptides present in an equal or higher number of gen-
uine T cell response targets compared to peptides in the actual
set of potential T cell recognition targets. In the second Monte
Carlo test (performed with mcPeptides), significance was com-
puted as the fraction of 10 000 random sets with an equal or
higher number of peptides contained in the genuine T cell re-
sponse targets than the peptides contained in the genuine set of
potential T cell recognition targets. We performed post hoc tests
specifically to investigate whether helper or cytotoxic T cells
were responsible for the observed effect. As these were explor-
atory tests following our initial analysis, no correction for multi-
ple testing was applied.

All computations, including Monte Carlo tests, were per-
formed using the R programming language (version 2022.12.0þ)
and its standard base package [10]. The analysis was conducted
within the IntelliJ IDEA integrated development environment
(version 2021.3.3, Community Edition). The R scripts utilized in
this study were developed, tested, and executed in the IntelliJ
IDEA environment [11], taking advantage of its comprehensive
toolset for code editing and debugging. The scripts and corre-
sponding usage instructions are available at https://github.com/
jflegr/peptides [9].

Results
How many potential targets of human T cell
recognition are there in SARS-CoV-2 proteins?
We prepared penta-, hexa-, and heptapeptide vocabularies for
humans and SARS-CoV-2 as well as lists of peptides present in
the SARS-CoV-2 proteome but absent in the human proteome,
that is, lists of potential targets of T cell recognition. The genetic
distance between SARS-CoV-2 and humans is considerable,
which is also why most viral peptides longer than six amino acids
were absent in human proteins. Our analyses found that 983
(10.2%) of all 9609 pentapeptides, 7091 (73.7%) of all 9620 hexa-
peptides, and 9334 (97.2%) of all 9598 heptapeptides of SARS-
CoV-2 were absent in human peptides and therefore could serve
as potential targets of human T cell recognition (Fig. 2). The den-
sity of potential pentapeptide targets of T cell recognition was
lower in the spike than in 10 other SARS-CoV-2 proteins (8.75%
versus 11.07%, v2 ¼ 5.80, P¼ 0.016) [7]. No difference in the den-
sity of potential targets was observed for hexapeptides (7.43%
versus 7.44%, v2 ¼ 0.01, P¼ 0.922) or heptapeptides (9.79% versus
9.72%, v2 ¼ 1.84, P¼ 0.175).

We calculated the sensitivity of the new method as the frac-
tion of peptides identified by Tarke et al. as real targets of T cell
response which contained at least one of our potential penta-,
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hexa-, and heptapeptide targets of T cell recognition. Then, we
used a Monte Carlo test to estimate whether this fraction is larger

than the equivalent fraction calculated for a case where potential
targets of T cell recognition are selected from SARS-CoV-2 pep-

tide vocabularies randomly (or, alternatively, where our method
of recognition of T cell targets does not work).

Tarke et al. tested 1952 15mer peptides covering whole SARS-

CoV-2 proteomes and found 280 (14.3%) peptides which were,
according to their criteria, the targets of actual helper T cell re-

sponse (Fig. 2A). Using predictive algorithms, they found 5600 po-
tential targets of response by cytotoxic T cells; in subsequent

empirical essays, they found that 454 (8.11%) of them actually eli-
cited a response by cytotoxic T cells. We found that 293 (39.9%) of
all 734 targets of response by helper or cytotoxic T cells contained

some of our 983 potential pentapeptides, 727 (99.0%) some of our
7091 potential hexapeptides, and 734 (100%) some of our 9334

heptapeptide targets of T cell recognition. Monte Carlo tests
showed that the potential pentapeptide and hexapeptide T cell

targets were strongly overrepresented in peptides which were
recognized by helper T cells. When 983 pentapeptides and 7091

hexapeptides were selected 10 000 times randomly from all
SARS-CoV-2 pentapeptides and hexapeptides, only, on average,

75.18 (10.2%) and 541.07 (73.7%) peptides eliciting T cell response
contained some of the randomly selected pentapeptides and hex-

apeptides, respectively. The difference in representation of our
potential targets of T cell recognition and the “pseudotargets” of

randomly selected sets in peptides that really elicited T cell re-
sponse was highly significant for both pentapeptides (39.9% ver-

sus 10.2%, P< 0.0001, Cohen’s d¼ 27.50) and hexapeptides (99.0%
versus 73.7%, P< 0.0001, Cohen’s d¼ 16.2). In fact, pseudotargets
of all of the 10 000 random sets of peptides were represented less

frequently in peptides eliciting T cell response than in the genu-
ine set of our potential targets of T cell recognition. Potential hep-
tapeptide targets of recognition were present in all peptides
eliciting a T cell response, while randomly selected pseudotargets
were present only in 97.0% of such peptides (Fig. 3A–C). Again,
the overrepresentation of genuine potential targets in peptides
eliciting a T cell response was highly significant (100% versus
97.0%, P< 0.0001, Cohen’s d¼ 4.98). The effect size of all observed
effects was very large; according to the widely used Cohen’s no-
menclature, all effects with Cohen’s d> 0.8 are classified as large
[12].

Post hoc analyses were performed separately for targets of re-
sponse by helper and cytotoxic T cells which originated from the
spike protein and the rest of the SARS-CoV-2 proteome (see
Table 1). Analyses showed that the effect—that is, the overrepre-
sentation of pentapeptide and hexapeptide potential targets of
recognition in real targets of T cell response—was about twice
stronger for helper T cells than for cytotoxic T cell targets, and it
was weaker for the spike protein than for other proteins. The fre-
quency of immunogenic peptides containing potential targets of
T cell recognition was lower in the spike protein than in other
SARS-CoV-2 proteins (see Table 1).

What fraction of potential T cell targets were
present in the known targets of T cell response?
We calculated the specificity of the new method as the fraction
of our potential penta-, hexa-, and heptapeptide targets of T cell
recognition that were present in peptides identified by Tarke et al.
as real targets of T cell response. Tarke et al. found 280 15mer
peptides recognized by Th cell and 454 peptides, 9–14 amino acids
in length, that elicited a Tc-cell response (Fig. 2A). We found that
296 (30.1%) of the 983 identified potential pentapeptide targets,

Figure 1: Schedule of Monte Carlo tests used in the present study. This schedule uses hexapeptides as an example. The same approach was applied to
pentapeptides and heptapeptides.

Flegr et al. | 3

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

ethods/article/8/1/bpad011/7230015 by guest on 25 July 2023



2124 (30.0%) of the 7091 identified potential hexapeptide targets,
and 2525 (27.1%) of the 9334 heptapeptide targets were present
either among the empirically identified peptides stimulating the
Th cells (pentapeptides: 198; hexapeptides: 1457; heptapeptides:
1798) or among Tc-cell epitopes (pentapeptides: 168, hexapepti-
des: 1159, heptapeptides: 1215), see Fig. 2B. Some of them,
namely 70 pentapeptides, 492 hexapeptides, and 488
heptapeptides, were even present in both Th-cell and Tc-cell
epitopes.

We used a Monte Carlo test to examine whether the potential
penta-, hexa-, and heptapeptide targets were present among the
genuine targets of T cell response significantly more often than
random sets of SARS-CoV-2 penta-, hexa- and heptapeptides. We
compared the representation of potential penta-, hexa- and hep-
tapeptide targets in the genuine targets of T cell response with
the representation of 983 pentapeptides, 7091 hexapeptides, and
9334 heptapeptides 10 000 times randomly selected from the
SARS-CoV-2 proteome (Fig. 1). The results showed that our in sil-
ico-identified hexapeptides, but not pentapeptides or heptapepti-
des, were overrepresented in the empirically identified targets of
T cell recognition in post-COVID patients (hexapeptides: genuine
peptides 2124, random peptides 2186.03, P¼ 0.027, Cohen’s
d¼ 1.97; pentapeptides: genuine peptides 296, random peptides
309.95, P¼ 0.834, Cohen’s d¼ 1.02; heptapeptides: genuine pepti-
des 2525, random peptides 2526.49, P¼ 0.658, Cohen’s d¼ 0.47)
(Fig. 3D). Post hoc tests performed separately for targets of cyto-
toxic and helper T cells showed that the results were significant

for hexapeptides recognized by cytotoxic T cells (P¼ 0.040,
Cohen’s d¼ 1.77, genuine 1159 versus random 1130.33) but not
for those recognized by helper T cells (P¼ 0.075, Cohen’s d¼ 1.44,
genuine 1457 versus random 1433.07). The effects were predomi-
nantly non-significant and considerably weaker than those de-
scribed in the previous section, but still remained very large
according to Cohen’s classification.

Table 2 shows the results of Monte Carlo tests performed sep-
arately for the whole virus (the upper section), for its spike pro-
tein originating from the human-adapted virus (the middle
section), and for the rest of the virus, that is, the 10 genes which
originated from the horseshoe bat-adapted SARS-CoV-2 progeni-
tor (the bottom section). Overrepresentation of potential hexa-
peptide targets of T cell recognition in peptides eliciting a T cell
response was significant only for those immunogenic peptides
originating in the spike protein which elicited a helper T cell re-
sponse. Analyses of proteins originating from the other ten pro-
teins showed an overrepresentation of potential heptapeptide
targets of T cell recognition which were present in some peptides
stimulating a T cell response.

Discussion
Our in silico method predicted a subpopulation of pentapeptides
and hexapeptides with the potential to induce a T cell response
in humans. These peptides were overrepresented among those
experimentally identified as T cell targets in post-COVID

Figure 2: Classification and representation of targets of T cell response and potential targets of T cell recognition. (A) Offers a basic outline of genuine
targets of helper and cytotoxic T cell response in empirically tested SARS-CoV-2 peptides [8]. (B) It shows a basic outline of potential targets of T cell
recognition contained in peptides eliciting T cell response in all potential targets of T cell recognition and in all SARS-CoV-2 peptides.
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patients. The method has relatively high sensitivity and relatively
low specificity. Therefore, the absence of a parasite’s peptide in
the host is a strong indicator of its immunogenicity; however,
only a fraction of such potentially immunogenic peptides are pre-
sent in peptides that really elicit T cell response.

About 70% of potential targets of T cell recognition were ab-
sent in all peptides which had been recognized as targets of T cell
response by immunological assays. Many of them were probably
absent for trivial reasons, such as the corresponding peptides
were not being tested in the Tarke et al. study or not binding to
any variant of MHC proteins of the 99 post-COVID patients in-
volved in the study. There are, however, at least two other, less
trivial explanations. To fit in the groove of MHC proteins and to
be kept there firmly enough, specific amino acids must surround
the peptide recognized by a T cell. Moreover, a potential immune
response target can become an actual immune response target
only if it is present in the protein expressed intensively enough in
the virus-infected cells. Tarke et al. showed that most peptides
stimulating a T cell response were present in just 4 out of 22 pro-
teins, most frequently in the spike protein. Potential targets of T
cell recognition present in the weakly expressed or less immuno-
genic proteins therefore had a low chance of being detected in an
empirical study. Our study confirmed that a strikingly higher
fraction of predicted targets (70%) were observed in empirically
detected T cell immunogenic peptides originating from the highly
expressed and highly immunogenic spike protein than in the
whole SARS-CoV-2 proteome (30%). This explanation thus seems
to be the most probable of all the (non-exclusive) explanations

mentioned just above. In this context, it is essential to bear in
mind that the density of potential pentapeptide targets of T cell
recognition was lower in the highly expressed, highly immuno-
genic spike protein than in other SARS-CoV-2 proteins. This dif-
ference in densities aligns with the results of an earlier study on
pentapeptide and hexapeptide vocabularies of coronaviruses [7].
The study compared the vocabularies of 11 human and bat coro-
naviruses with those of 38 different mammal species. It revealed
that the spike protein of SARS-CoV-2 had the highest similarity to
humans (it had the fewest number of pentapeptides absent in
human proteins), while other proteins had the greatest similarity
to the horseshoe bat. This suggests that SARS-CoV-2, and not any
other viruses except the closely related RatG-13, is a chimera. Its
spike protein originated from a donor initially adapted to a hu-
man host (therefore lacking most pentapeptides absent in the hu-
man peptidome), while the rest of its proteome originated from
another coronavirus species initially adapted to horseshoe bats.
The same analysis for the more rapidly evolving hexapeptide vo-
cabularies indicated that the donor of the spike gene was recently
passaged in rats (SARS-CoV-2) and mice (RatG-13), while the do-
nor of other genes passed through another animal used in viro-
logical labs, specifically the treeshrew [7]. In typical parasites of
non-chimeric origin, the densities of T cell recognition targets
will be similar in all parts of the proteome. Hence, the correlation
between the immunogenicity of an individual protein and the
density of its potential T cell recognition targets will probably be
higher for such parasites than for SARS-CoV-2. The practical im-
plication of our discovery is that even a protein with a low density

Figure 3: Results of the Monte Carlo test. (A–C) Figures display an overrepresentation of potential targets found in T cell response-eliciting peptides
among all potential T cell recognition targets (penta-, hexa- and heptapeptides, respectively). (D) Illustrates an overrepresentation of T cell response-
eliciting peptides containing potential T cell recognition targets (hexapeptides).

Flegr et al. | 5

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

ethods/article/8/1/bpad011/7230015 by guest on 25 July 2023



of potential T cell targets can be a highly potent immunogen if it
is expressed at sufficiently high levels and/or when it is located
on the pathogen’s surface. The impact of this finding on the
strategy for developing effective vaccine candidates is outlined
below.

All peptides that elicited T cell response in post-COVID
patients contained at least one predicted hexapeptide and hepta-
peptide target of immune recognition, and about one half of the
immunogenic peptides contained at least one of the less numer-
ous pentapeptide targets. Results of the Monte Carlo tests show
that such overrepresentation is highly improbable and cannot
happen by chance. In fact, peptides of none of the 10 000 ran-
domly selected sets of peptides were similarly overrepresented in
the 280 helper T cell epitopes. This stronger overrepresentation
of hexapeptides than pentapeptides (Table 2) might seem para-
doxical. Intuitively, we would expect the presence of a potential
hexapeptide target to be necessarily associated with the exis-
tence of a pentapeptide target. This principle, however, applies
only in the reverse direction: the presence of potential pentapep-
tides is necessarily associated with the presence of hexapeptide
targets. A comparison of our lists of potential T cell recognition
targets showed that most of the potential hexapeptide T cell tar-
gets (76.7%) contained only pentapeptides which are present in

the human proteome. As a result, a significant fraction of poten-
tial hexapeptide targets contains no potential pentapeptide tar-
get.

Upon comparing the overrepresentation of pentapeptides and
hexapeptides, which contain at least one potential T cell target, we
found that those which elicited a T cell response tended to be pen-
tapeptides. This, in conjunction with the notably lower density of
potential pentapeptide T cell targets in the spike protein (as com-
pared to a less dramatic reduction in hexapeptides), suggests that
T cells might predominantly target pentapeptides rather than hex-
apeptides. In contrast, the opposite was suggested by the analyses
of overrepresentation of potential targets of recognition which are
present in peptides that elicited T cell response within all potential
targets of T cell recognition (Cohen’s d 1.02 versus 1.97). Earlier pro-
teomic analyses indicated that pentapeptides, and not hexapepti-
des, are the primary targets of the T cell recognition. For example,
a comparison of sizes of peptide vocabularies of 38 parasitic and 33
nonparasitic species showed that parasites of vertebrate hosts
have impoverished pentapeptide vocabulary but enriched hexa-
peptide vocabulary [5]. Similarly, the relative genetic distance be-
tween the horseshoe bat and SARS-CoV-2 vocabularies, as well as
between the human and SARS-CoV-2 spike protein vocabulary,
was smaller for pentapeptides than for hexapeptides [7].

Table 1: Prevalence of potential targets of T cell recognition in peptides that elicited a T cell response

Proteins/vocabularies No.
targets

With genuine
targets

With genuine
targets (%)

With random
targets

With random
targets (%)

SD random
targets

P Cohen’s d

T cells, whole virus
5-Peptides 734 293 39.9 75.18 10.2 7.92 0.000 27.50
6-Peptides 734 727 99.0 541.07 73.7 11.48 0.000 16.20
7-Peptides 734 734 100.0 712.18 97.0 4.38 0.000 4.98

Th cells, whole virus
5-Peptides 280 155 55.4 28.72 10.3 5.04 0.000 25.04
6-Peptides 280 280 100.0 206.41 73.7 7.30 0.000 10.10
7-Peptides 280 280 100.0 271.65 97.0 2.78 0.000 3.01

Tc cells, whole virus
5-Peptides 454 138 30.4 46.50 10.2 6.31 0.000 14.50
6-Peptides 454 447 98.5 334.65 73.7 9.24 0.000 12.16
7-Peptides 454 454 100.0 440.45 97.0 3.53 0.000 3.84

T cells, spike protein
5-Peptides 247 86 34.8 21.63 8.8 3.96 0.000 16.26
6-Peptides 247 241 97.6 183.40 74.3 6.14 0.000 9.40
7-Peptides 247 247 100.0 241.76 97.9 2.04 0.002 2.58

Th cells, spike protein
5-Peptides 92 46 50.0 8.02 8.7 2.63 0.000 14.44
6-Peptides 92 92 100.0 68.36 74.3 4.05 0.000 5.84
7-Peptides 92 92 100.0 90.03 97.9 1.35 0.135 1.46

Tc cells, spike protein
5-Peptides 155 40 25.8 13.53 8.7 3.25 0.000 8.14
6-Peptides 155 149 96.1 115.16 74.3 5.13 0.000 6.60
7-Peptides 155 155 100.0 151.72 97.9 1.69 0.031 1.94

T cells, other proteins
5-Peptides 487 207 42.5 53.84 11.1 6.62 0.000 23.13
6-Peptides 487 486 99.8 362.47 74.4 9.20 0.000 13.43
7-Peptides 487 487 100.0 473.34 97.2 3.50 0.000 3.94

Th cells, other proteins
5-Peptides 188 109 58.0 20.83 11.1 4.22 0.000 20.90
6-Peptides 188 188 100.0 139.93 74.4 5.92 0.000 8.12
7-Peptides 188 188 100.0 182.73 97.2 2.25 0.004 2.34

Tc cells, other proteins
5-Peptides 299 98 32.8 33.90 11.3 5.21 0.000 12.45
6-Peptides 299 298 99.7 222.54 74.4 7.26 0.000 10.40
7-Peptides 299 298 99.7 290.58 97.2 2.74 0.000 3.07

This table presents the total number of potential T cell recognition targets (Column 2, No. targets), the count of those actually present in peptides eliciting T cell
responses (Column 3, Within genuine), their proportion among all potential T cell recognition targets (Column 4, Within genuine %), and the results of the Monte Carlo
test. Specifically, the last five columns display the mean number of randomly selected pseudotargets present in peptides eliciting a T cell response (Column 5,
Within random), their proportion within all pseudotargets (Column 6, Within random %), the standard deviation of the number of pseudotargets present in peptides
eliciting a T cell response (Column 7, SD random), the significance of the one-sided Monte Carlo test (Column 8, P), and a Cohen’s d indicating the effect size,
representing the difference between columns 3 and 5 (Column 9, Cohen’s d).
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These discrepancies between previous and current results
could be explained as follows: pentapeptides are recognized by
T cell receptors (TCRs), but longer peptides are needed for attach-
ment in the MHC protein groove [13]. The specificity of the bond
between the MHC protein and the neighboring amino acids of
the T-cell-recognized pentapeptide might be relatively low. This
could be due to the possibility that several different amino acids
(although certainly not all) surrounding a certain T-cell-recog-
nized pentapeptide can facilitate its binding to a specific variant
of the MHC protein. If a clone of T cell recognizes a particular
pentapeptide, then probably several peptides containing different
hexapeptides which include this pentapeptide are also recog-
nized as immunogenic in immunological assays. It is possible
that due to these “pseudoreplications”, statistical and Monte
Carlo tests can more easily detect the enrichment of immuno-
genic peptides by hexapeptide targets than by pentapeptide tar-
gets. Due to this effect, we would more easily detect
hexapeptides as targets of T cell recognition even if pentapepti-
des were the genuine targets of T cell recognition.

Regardless of whether pentapeptides or hexapeptides are be-
ing recognized by the T cells, the impoverishment of peptide vo-
cabularies can be more easily recognized on the level of

pentapeptides than on the level of hexapeptides. As discussed
earlier [5], there are at least two processes that most likely affect
the size of hexapeptide vocabularies. The first is the elimination
of hexapeptides. This process necessarily accompanies the elimi-
nation of pentapeptides, because elimination of a pentapeptide
can theoretically result in the elimination of as many as 40 differ-
ent hexapeptides containing that particular pentapeptide. As ar-
gued earlier, the rate of elimination of hexapeptides from
proteins during the parasite’s adaptation to a new host is proba-
bly faster than the rate of elimination of pentapeptides [7].
Another process that runs in the opposite direction is the enrich-
ment of the hexapeptide vocabulary, aiming to compensate for
the shortage in the number of pentapeptides. To build up biologi-
cally active proteins using a smaller collection of (pentapeptide)
building blocks, the parasites must use these blocks more
inventively—and this automatically results in a richer
hexapeptide vocabulary.

The fact that many potential T cell targets were not detected
in any immunogenic peptides can be explained easily, as dis-
cussed above. More interesting is the existence of about one-half
of immunogenic peptides that do not contain any potential pen-
tapeptide T cell targets. As discussed in the previous paragraphs,

Table 2: Prevalence of potential targets which were present in peptides eliciting T cell response within all potential targets of T cell
recognition

No.
targets

Within
genuine

Within
genuine (%)

Within
random

Within
random (%)

SD
random

P Cohen’s d

T cells, whole virus
5-Peptides 983 296 30.1 309.95 31.5 13.71 0.834 1.02
6-Peptides 7091 2124 30.0 2086.03 29.4 19.29 0.027 1.97
7-Peptides 9334 2525 27.1 2526.49 27.1 7.39 0.658 0.47

Th cells, whole virus
5-Peptides 983 198 20.1 206.35 21.0 11.98 0.743 0.70
6-Peptides 7091 1457 20.5 1433.07 20.2 16.64 0.075 1.44
7-Peptides 9334 1798 19.3 1802.75 19.3 6.54 0.751 0.73

Tc cells, whole virus
5-Peptides 983 168 17.1 183.2 18.6 11.45 0.906 1.33
6-Peptides 7091 1159 16.3 1130.33 15.9 15.92 0.040 1.77
7-Peptides 9334 1215 13.0 1226.34 13.1 5.56 0.969 2.01

T cells, spike protein
5-Peptides 111 78 70.3 80.12 72.2 4.51 0.646 0.47
6-Peptides 942 663 70.4 650.05 69.0 7.22 0.032 1.79
7-Peptides 1240 795 64.1 795.67 64.2 2.44 0.515 0.27

Th cells, spike protein
5-Peptides 111 65 58.6 61.16 55.1 5.03 0.198 0.76
6-Peptides 942 518 55.0 501.46 53.2 7.83 0.015 2.11
7-Peptides 1240 621 50.1 618.52 49.9 2.54 0.118 0.98

Tc cells, spike protein
5-Peptides 111 42 37.8 49.33 44.4 5.02 0.915 1.46
6-Peptides 942 369 39.2 364.09 38.7 7.58 0.238 0.65
7-Peptides 1240 391 31.5 393.41 31.7 2.35 0.793 1.03

T cells, other genes
5-Peptides 614 218 35.5 234.77 38.2 11.35 0.924 1.48
6-Peptides 4132 1462 35.4 1455.64 35.2 15.51 0.336 0.41
7-Peptides 5387 1730 32.1 1721.19 32.0 5.76 0.049 1.53

Th cells, other genes
5-Peptides 614 133 21.7 146.44 23.9 9.98 0.902 1.35
6-Peptides 4132 940 22.7 945.9 22.9 13.72 0.653 0.043
7-Peptides 5387 1177 21.8 1170.15 21.7 5.08 0.071 1.35

Tc cells, other genes
5-Peptides 614 126 20.5 136.14 22.2 9.81 0.837 1.03
6-Peptides 4132 790 19.1 776.19 18.8 12.63 0.129 1.09
7-Peptides 5387 824 15.3 816.38 15.2 4.45 0.029 1.71

This table presents the total number of potential T cell recognition targets (Column 2, No. targets), the count of those actually present in peptides eliciting T cell
responses (Column 3, Within genuine), their proportion among all potential T cell recognition targets (Column 4, Within genuine %), and the results of the Monte Carlo
test. Specifically, the last five columns display the mean number of randomly selected pseudotargets present in peptides eliciting a T cell response (Column 5,
Within random), their proportion within all pseudotargets (Column 6, Within random %), the standard deviation of the number of pseudotargets present in peptides
eliciting a T cell response (Column 7, SD random), the significance of the one-sided Monte Carlo test (Column 8, P), and a Cohen’s d indicating the effect size,
representing the difference between columns 4 and 6 (Column 9, Cohen’s d).
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it is possible that hexapeptides, rather than pentapeptides—or,
even more probably, both hexapeptides and pentapeptides—are
the genuine targets of T cell recognition. It can be argued that ex-
perimental approaches (such as crystallography, site-directed
mutagenesis, and binding inhibition experiments), rather than
bioinformatics, can tell us whether pentapeptides, hexapeptides
or both are recognized by T cells. Such experimental studies have
already identified the amino acids which are in physical contact
with the hypervariable CDR3 loop of TCR, as well as those which
are necessary for the binding or correct positioning of a peptide in
the groove of MHC molecules for a large number of MHC–pep-
tide–TCR complexes [14]. Even these direct methods, however,
are not omnipotent. Not all identified amino acids are necessarily
part of the hexapeptide or pentapeptide that allowed T cell recog-
nition. To repeat: the presence of a parasite’s peptide that is ab-
sent in the host vocabulary is a necessary but not sufficient
condition of T cell recognition.

Another possible explanation for the total absence of pre-
dicted targets in some immunogenic peptides is that human T
cells recognize even some pentapeptides of human origin as non-
self. Elimination of potentially autoreactive T cells in the process
of negative selection during their maturation does not work with
a 100% efficiency. If some pentapeptides are present in only
weakly expressed human proteins, or in proteins weakly
expressed in the cells of the human thymus, then the corre-
sponding T cells might survive the passage through the thymus.
Consequently, these peptides may elicit a T cell response when
they are present in sufficiently expressed viral proteins. This
mechanism can play a role in some types of autoimmune disor-
ders, because infection by a parasite can result in an expansion
of initially rare potentially autoreactive T cell clones [15] and the
existence of certain classes of regulatory T cells might be part of
adaptation of the immune system to such situations.

It is also probable that, due to polymorphism in most human
proteins, some pentapeptides are missing in the protein vocabu-
lary of some individuals, including the individual whose prote-
ome was used for the construction of peptide vocabularies in the
present study (F _000001405.39). In future studies, or when de-
signing vaccines, it might be helpful to prepare a more represen-
tative human peptide vocabulary by using the proteomes of
several individuals of different ethnic origins. In fact, one could
even construct different vocabularies used for the identification
of potential T cell recognition targets for people of different geo-
graphic or ethnic origins. Such approaches could mitigate the ef-
fect of genetic polymorphism in human protein-coding genes.

An efficient vaccine must contain not only the antigen that
could bind to B cell receptors (to membrane-bound and soluble
immunoglobulins) but also peptides that could bind to receptors
of helper T cells. Current algorithms for predicting which protein
will elicit a T cell response are based on rules derived from empir-
ical studies [16–18]. These algorithms yield valuable results when
searching for peptides that stimulate helper T cell responses;
however, they perform less effectively in identifying peptides
that stimulate cytotoxic T cell responses. For instance, in the
study by Tarke et al., 280 (14.3%) of all 1952 predicted epitopes in-
duced helper T cell responses, while only 454 (8.1%) of all 5600
predicted epitopes induced cytotoxic T cell responses. In compar-
ison, 30% of the 983 pentapeptides identified as potentially im-
munogenic by our method were present in peptides empirically
found to elicit T cell responses. For those originating from the
spike protein, as much as 70% were present in peptides that eli-
cited the T cell response.

Our method for predicting potentially immunogenic peptides
relies on rules derived from a theory, which is based on our un-
derstanding of the universal mechanism that allows the verte-
brate adaptive immune system to distinguish between self and
non-self. While our method demonstrates excellent sensitivity,
its specificity is not as strong. Therefore, we recommend using
our theory-based method when efficient empirically based algo-
rithms are unavailable, such as in the development of some vet-
erinary vaccines. In all other cases, we advise combining our
method with empirically based approaches. In these situations,
the optimal workflow for identifying immunogenic peptides (the
first step in vaccine development) consists of using our method
to find a set of viral peptides not present in the host’s proteome,
and then employing empirically based algorithms to identify a
subset that binds to the host’s MHC proteins. As demonstrated by
the example of the spike protein, it is particularly advantageous
to prioritize empirical testing of immunogenicity for peptides
within this subset that are derived from either highly expressed
proteins or surface proteins of the pathogen.

Limitations
In the present study, we applied our method to the entire viral
proteome. However, we only have information about the genuine
immunogenicity for the subset of peptides that previously passed
the empirically based algorithm screening and were therefore ex-
perimentally tested for immunogenicity by Tarke et al. [8]. It is
highly possible that many peptides identified as potential targets
of T cell response by our method are part of immunogenic pepti-
des that were not tested in Tarke et al.’s study. Consequently, it is
likely that the specificity of the new method is much higher than
it appears based on our results. Future studies should compare
the sensitivity and specificity of the new and old methods by test-
ing the real immunogenicity of three subsets of peptides, namely
peptides identified by the new method, the old method, and those
identified simultaneously by both methods. Such studies, how-
ever, must be conducted in immunological laboratories, rather
than in institutions focusing on theoretical biology.

Conclusion
Our study showed that a new bioinformatic method based on
comparing parasite and host peptide vocabularies can predict
which peptides will be the targets of T cell recognition. This
method is based on a different principle than the currently used
predictive algorithms. It has correctly predicted 70% of immuno-
genic peptides in a strongly expressed and highly immunogenic
spike protein of SARS-CoV-2. Therefore, this inexpensive and
rapid method could most likely be deployed in designing new
vaccines, particularly in the search for peptides likely to elicit
helper and cytotoxic T cell responses in both human and veteri-
nary medicine.
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[equal]), Ivana Králová Lesná (Funding acquisition, Investigation,
Writing—original draft, Writing—review and editing [equal]) and
Daniel Zahradn�ık (Data curation, Formal analysis, Investigation,
Methodology, Software, Writing—review and editing [equal]).

References
1. Lanzavecchia A. Antigen-specific interaction between T-cells and

B-cells. Nature 1985;314:537–9.

2. Jagger A, Shimojima Y, Goronzy JJ et al. Regulatory T cells and the

immune aging process: a mini-review. Gerontology 2014;60:130–7.

3. Foulsham W, Marmalidou A, Amouzegar A et al. Review: the

function of regulatory T cells at the ocular surface. Ocul Surf 2017;

15:652–9.

4. Najafi M, Farhood B, Mortezaee K. Contribution of regulatory T

cells to cancer: a review. J Cell Physiol 2019;234:7983–93.

5. Zemkova M, Zahradnik D, Mokrejs M et al. Parasitism as the main

factor shaping peptide vocabularies in current organisms.

Parasitology 2017;144:975–83.
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